Введение в цифровую схемотехнику

Двоичное кодирование


Одиночный цифровой сигнал не слишком информативен, ведь он может принимать только два значения: нуль и единица. Поэтому в тех случаях, когда необходимо передавать, обрабатывать или хранить большие объемы информации, обычно применяют несколько параллельных цифровых сигналов. При этом все эти сигналы должны рассматриваться только одновременно, каждый из них по отдельности не имеет смысла. В таких случаях говорят о двоичных кодах, то есть о кодах, образованных цифровыми (логическими, двоичными) сигналами. Каждый из логических сигналов, входящих в код, называется разрядом. Чем больше разрядов входит в код, тем больше значений может принимать данный код.

В отличие от привычного для нас десятичного кодирования чисел, то есть кода с основанием десять, при двоичном кодировании в основании кода лежит число два (рис. 2.9). То есть каждая цифра кода (каждый разряд) двоичного кода может принимать не десять значений (как в десятичном коде: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9), а всего лишь два — 0 и 1. Система позиционной записи остается такой же, то есть справа пишется самый младший разряд, а слева — самый старший. Но если в десятичной системе вес каждого следующего разряда больше веса предыдущего в десять раз, то в двоичной системе (при двоичном кодировании) — в два раза. Каждый разряд двоичного кода называется бит (от английского "Binary Digit" — "двоичное число").


Рис. 2.9.  Десятичное и двоичное кодирование

В табл. 2.3 показано соответствие первых двадцати чисел в десятичной и двоичной системах.

Из таблицы видно, что требуемое количество разрядов двоичного кода значительно больше, чем требуемое количество разрядов десятичного кода. Максимально возможное число при количестве разрядов, равном трем, составляет при десятичной системе 999, а при двоичной — всего лишь 7 (то есть 111 в двоичном коде). В общем случае n-разрядное двоичное число может принимать 2n различных значений, а n-разрядное десятичное число — 10n значений. То есть запись больших двоичных чисел (с количеством разрядов больше десяти) становится не слишком удобной.

Таблица 2.3. Соответствие чисел в десятичной и двоичной системахДесятичная система Двоичная система Десятичная система Двоичная система
00101010
11111011
210121100
311131101
4100141110
5101151111
61101610000
71111710001
810001810010
910011910011
<
p> Для того чтобы упростить запись двоичных чисел, была предложена так называемая шестнадцатиричная система (16-ричное кодирование). В этом случае все двоичные разряды разбиваются на группы по четыре разряда (начиная с младшего), а затем уже каждая группа кодируется одним символом. Каждая такая группа называется полубайтом (или нибблом, тетрадой), а две группы (8 разрядов) — байтом. Из табл. 2.3 видно, что 4-разрядное двоичное число может принимать 16 разных значений (от 0 до 15). Поэтому требуемое число символов для шестнадцатиричного кода тоже равно 16, откуда и происходит название кода. В качестве первых 10 символов берутся цифры от 0 до 9, а затем используются 6 начальных заглавных букв латинского алфавита: A, B, C, D, E, F.


Рис. 2.10.  Двоичная и 16-ричная запись числа



Курсы | Учебные программы | Учебники | Новости | Форум | Помощь

Телефон: +7 (495) 253-9312, 253-9313, факс: +7 (495) 253-9310, email: info@intuit.ru
© 2003-2007, INTUIT.ru::Интернет- Университет Информационных Технологий - дистанционное образование



При сложении любых двух n- разрядных двоичных чисел может получиться n-разрядное или (n+1)-разрядное число.

Точно так же производится вычитание. Пусть из числа 10010 (18) надо вычесть число 0111 (7). Записываем числа с выравниванием по младшему разряду и вычитаем точно так же, как в случае десятичной системы:



При вычитании 0 из 0 получаем 0, при вычитании 0 из 1 получаем 1, при вычитании 1 из 1 получаем 0, при вычитании 1 из 0 получаем 1 и заем 1 в следующем разряде. Результат — 1011 (десятичное 11).

При вычитании возможно получение отрицательных чисел, поэтому необходимо использовать двоичное представление отрицательных чисел.

Для одновременного представления как двоичных положительных, так и двоичных отрицательных чисел чаще всего используется так называемый дополнительный код. Отрицательные числа в этом коде выражаются таким числом, которое, будучи сложено с положительным числом такой же величины, даст в результате нуль. Для того чтобы получить отрицательное число, надо поменять все биты такого же положительного числа на противоположные (0 на 1, 1 на 0) и прибавить к результату 1. Например, запишем число –5. Число 5 в двоичном коде выглядит 0101. Заменяем биты на противоположные: 1010 и прибавляем единицу: 1011. Суммируем результат с исходным числом: 1011 + 0101 = 0000 (перенос в пятый разряд игнорируем).

Отрицательные числа в дополнительном коде отличаются от положительных значением старшего разряда: единица в старшем разряде определяет отрицательное число, а нуль — положительное.

Помимо стандартных арифметических операций, в двоичной системе счисления используются и некоторые специфические операции, например, сложение по модулю 2. Эта операция (обозначается A) является побитовой, то есть никаких переносов из разряда в разряд и заемов в старших разрядах здесь не существует. Правила сложения по модулю 2 следующие:
,
,
. Эта же операция называется функцией Исключающее ИЛИ. Например, просуммируем по модулю 2 два двоичных числа 0111 и 1011:



Среди других побитовых операций над двоичными числами можно отметить функцию И и функцию ИЛИ.Функция И дает в результате единицу только тогда, когда в соответствующих битах двух исходных чисел обе единицы, в противном случае результат —0. Функция ИЛИ дает в результате единицу тогда, когда хотя бы один из соответствующих битов исходных чисел равен 1, в противном случае результат 0.


Содержание раздела